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Abstract The influence of increased nitrate concentration—
14 (control) and 140 mmol L−1 (T)—in hydroponic culture
on ammonia assimilation in cucumber (Cucumis sativus L.
cv. Xintaimici) seedlings was investigated. The results
showed that NH3 accumulation in the roots and leaves of
T seedlings increased significantly, indicating that NH3

toxicity might be involved in nitrate stress. Under control
conditions, GS and GOGAT activity were much higher in
the leaves than in the roots, whereas GDH activity was
much higher in the roots than in the leaves. Correlation
analysis showed that NH3 concentration had a strong
negative linear relationship with GDH activity in the roots
but had a strong negative linear relationship with GS and
GOGAT activity in the leaves. These results indicate that
NH3 might be assimilated primarily via GDH reaction in
the roots and via GS/GOGAT cycle in the leaves. Short-
term nitrate stress resulted in the increase of GS and
GOGAT activity in the roots and GDH activity in the leaves
of T seedlings, indicating possible shifts in ammonia
assimilation from the normal GDH pathway to GS/GOGAT
pathway in the roots and from the normal GS/GOGAT
pathway to the GDH pathway in the leaves under nitrate

stress, but with the increase of treatment time, GS, GOGAT,
and GDH activity in the roots and leaves of T seedlings
decreased possibly due to low water potential and NH3

toxicity.
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Introduction

Nitrogen is needed in large amounts by plants because it is
a constituent of macromolecules such as protein. However,
only some plants living in association with nitrogen-fixing
bacteria can use dinitrogen contained in the air. The
majority of plants rely on nitrate and ammonium that
originate from decomposition of organic materials and are
taken up from soil. Thus, the availability of nitrogen often
limits plant growth and development. Complicating this
situation for agriculture is the fact that often less than
50% of nitrogen fertilizer applied to crops ultimately may
be utilized by crops because nitrate is highly mobile and
is not absorbed by soil colloid (Allison 1966). To satisfy
the nitrogen demand, agriculturers often add nitrogen in
large quantities to maintain adequate level in the rhizo-
sphere (Zhu et al. 2005). This excessive use of nitrogen
fertilizer has resulted in undesirable conditions such as the
accumulation of nitrate in plant and soil. The large
accumulation of nitrogen in the soil, on one hand, has
contaminated the ground water (Barker and Mills 1980), on
the other hand, has resulted in soil secondary salinization in
the protected farmland because of a lack of leaching by
rainfall and strong evaporation of soil water (Kitamura et al.
2006).
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China has the largest area of protected crops and is now
the leading country in the world for protected agriculture,
including multispan greenhouse, solar lean-to greenhouse,
and plastic tunnels (Jiang and Du 2000). However,
secondary salinization has seriously limited sustainable
development of protected agricultural production in China
(Yu et al. 2005). According to the previous studies,
accumulation of ions in the protected farmland is greatly
different from in the seaside or inland. In the protected
farmland, the main cation and anion are Ca2+, K+, and
NO3

−, respectively, whereas Na+ and Cl− are the main
forms of ions in the seaside or inland (Ju et al. 2007).

In the past several years, lots of research on salt stress to
plants has been done, but most of it has been focused on
NaCl (Stepien and Johnson 2009; Zhu 2002). So far, there
have been few investigations about nitrate stress to
horticultural crops. Cucumber is one of the most important
horticultural crops. It has been reported that the large
accumulation of nitrate seriously inhibited the growth and
development of cucumber in the protected farmland of
China (Lü et al. 2007). Yang (2008) reported that excessive
nitrate supply greatly influenced nitrate reduction and
resulted in large accumulation of NO3

− and NO2
− and

serious repression of in vivo nitrate reductase activity in
cucumber seedlings. However, it is still unclear how
ammonia assimilation, which is catalyzed mainly by
glutamine synthetase (GS), glutamate synthase (GOGAT),
and glutamate dehydrogenase (GDH), responds to nitrate
stress in cucumber seedlings (Fig. 1).

The objective of this work was to examine the effect of
nitrate stress on ammonia assimilation in cucumber seed-
lings. Ammonia (NH3) concentration, GS, GOGAT, and
GDH activity in cucumber seedlings were investigated
under nitrate stress with hydroponic culture.

Materials and Methods

Plants, Growth Conditions, and Experimental Design

Cucumber (Cucumis sativus L. cv. Xintaimici, midtolerant
to salinity stress; kindly provided by Xintai Research
Institute of Cucumber, China), was used in all experiments.
The seeds were sterilized with sodium hypochlorite
containing 5% active HOCl for 5 min, soaked for 12 h in
deionized water after being washed five times. The soaked
seeds were raised in well-washed quartz sand and irrigated
with tap water. The experiments were carried out in the
greenhouse of Shandong Agricultural University from
March to June in 2007. When there was one completely
expanded leaf, the plants were washed with tap water to
remove all substrate from the roots and then transplanted to
hydroponic boxes (40×30×12 cm, eight plants per box)
containing a complete cucumber nutrient solution (Guo
2004) with continuous aeration by an electric pump. The
nutrient solutions in all the hydroponic boxes were renewed
every 4 days. When the seedlings had developed three
completely expanded leaves, nitrate was dissolved in
nutrient solution directly. The stress by excess of nitrate
was carried out in a split-plot design with three replications
of completely randomized design, providing eight plants
per replication. Two treatments were applied (Table 1):

CKð Þcomplete nutrient solution controlð Þ;
Tð Þ complete nutrient solutionþCa NO3ð Þ2 31:5 mmol�L�1

þ KNO3 63 mmol � L�1

At 0, 1, 2, 4, 6, 8, and 12 days after treatment, the
second and third completely expanded leaves counted from
the top and lateral roots of cucumber seedlings were
sampled and measured for NH3 concentration, GS,
GOGAT, and GDH activity.

Determination of NH3 Concentration

Ammonia concentration was determined according to the
method of Tang (1999). Sample (0.5 g) of fresh tissue was
put in a mortar with 5 ml 10% (V/V) acetic acid and ground
to a fine powder. Then the powder was diluted to 100 ml
with deionized water and filtered into a 100-ml beaker. The
reaction solution included 2 ml ammonia extraction, 3 ml
ninhydrin reagent solution, and 0.1 ml 1% (W/V) ascorbic
acid. The mixture was well stirred and boiled for 15 min.
Reagent blank was incubation mixture in which the
ammonia extraction was replaced by deionized water. After
cooling to room temperature in a cold water bath, the
reaction solution was made to 5 ml with alcohol and well

Fig. 1 Simple scheme of ammonia assimilation pathways (Yuan et al.
2009). The three enzyme circuit assimilates NH3 and produces two
central intermediates, glutamine and glutamate. GS catalyzes gluta-
mine synthesis. Glutamate can be synthesized by the action of either
GS/GOGAT or GDH, respectively, with high or low affinity for NH3

(Yan 2007)
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stirred. The absorbance was recorded with spectrometer
(160A, Shimadzu, Japan) at 580 nm (Tang 1999).

Determination of GS Activity

Sample (1 g) of fresh tissue was extracted at 4°C with a
pestle and mortar. The extraction medium consisted of
0.05 mol L−1 sodium phosphate buffer (pH 7.4),
0.4 mol L−1 sucrose, and 4 mmol L−1 cysteine. The ratio
of tissue to medium was 1:4 (W/V). The homogenate was
centrifuged for 10 min at 10,000×g at 4°C. The clear
supernatant was used to determine GS activity. GS activity,
expressed as OD per gram FW·per hour, was determined
according to the method of Wang et al. (2002).

Determination of GOGAT and GDH Activity

Enzymes were extracted according to the method described
before by Srivastava and Ormrod (1984). Sample (5 g) of
fresh tissue was extracted at 4°C with a pestle and mortar.
The extraction medium consisted of 0.2 mol L−1 sodium
phosphate buffer (pH 7.5), 2 mmol L−1 EDTA, 1 mmol L−1

cysteine, and 0.5% (W/V) casein. The ratio of tissue to
medium was 1:4 (W/V). The extraction was centrifuged for
10 min at 20,000×g at 4°C. GDH activity was assayed in a
part of the supernatant. The rest of the supernatant was
centrifuged further for 20 min at 30,000×g at the same
temperature. The supernatant thus obtained was assayed for
GOGAT activity.

GOGAT activity was assayed for NADH specific activity
according to the method described before (Srivastava and
Ormrod 1984). The assay mixture consisted of 2 ml
0.2 mol L−1 sodium phosphate buffer (pH 7.5) containing
10 mmol L−1 glutamine, 0.4 ml 50 mmol L−1 α-
ketoglutarate, 0.4 ml 0.1 mmol L−1 NADH, and 0.2 ml of
enzyme preparation. The reaction was started by the
addition of NADH followed immediately by the enzyme
preparation. Reagent blank was the assay mixture in which
α-ketoglutarate was replaced by deionized water. The
oxidation of NADH was recorded at 340 nm.

GDH activity was determined for NAD+ specificity by
the method described before (Singh and Srivastava 1983;
Tang 1999) with some modification. Reaction mixture
contained 0.2 ml enzyme extraction and 2.8 ml 0.2 mol L−1

sodium phosphate buffer (containing 60 mmol L−1 gluta-
mate, 0.1 mmol L−1 NAD+, pH 7.5). The reaction was
initiated by the addition of 0.2 ml enzyme extraction.
Reagent blank was the reaction mixture in which glutamate
was replaced by deionized water. The rate of the reduction of
NAD+ was determined by monitoring A at 340 nm.

Protein Determination

Protein content was determined by the dye-binding method
of Bradford (1976) with bovine serum albumin as a standard.

Statistical Analysis

Data were analyzed with OriginPro8 (Version8E, OriginLab
Corporation, Massachusetts, USA) and presented as means
of three replicates ± standard errors.

Results

NH3 Concentration

Figure 2 showed changes of NH3 concentration in the roots
and leaves of cucumber seedlings under nitrate stress. NH3

concentration in the roots and leaves of CK seedlings had
few changes over treatment course. NH3 concentration in
the roots of T seedlings increased rapidly during the first
8 days compared with CK. After 8 days, this increase of
NH3 concentration in the roots of T seedlings became slow
and reached 1.61 times of CK at the end of treatment course.
In the leaves of T seedlings, NH3 concentration increased
slowly during the first 8 days, and a dramatic increase
occurred after 8 day. At 12 days, NH3 concentrations in the
leaves of T seedlings were 46% higher than CK.

GS Activity

Figure 3 showed changes of GS activity in the roots and
leaves of cucumber seedlings under nitrate stress. GS
activity was much higher in the leaves (from 9.50 to
10.54 OD g−1 FW h−1) than in the roots (from 1.01 to
1.71 OD g−1 FW h−1) under control conditions. With the
increase of treatment time, GS activity in the roots of CK

Table 1 Nitrate concentration and osmotic potential of solution

Treatment Ca(NO3)2
(mmol·L−1)

KNO3

(mmol·L−1)
NO3

− (mmol·L−1) Osmotic potential
before treatment (MPa)

Osmotic potential
after treatment for
3 days (MPa)

CK 3.5 7 14 −0.256 −0.218
T 35 70 140 −0.570 −0.567
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seedlings increased gradually. During the first 2 days, GS
activity in the roots of T seedlings dramatically increased by
62.1% with respect to CK. Thereafter, the activity decreased.
At 12 days, GS activity in the roots of T seedlings was 32.1%
lower than CK. There were few changes in GS activity in the
leaves of CK over treatment course. GS activity in the leaves
of T seedlings had no significant difference from CK during
the first 2 days. After 2 days, the activity decreased
substantially. At 12 days, GS activity in the leaves of T
seedlings was 42.7% lower than CK. Correlation analysis
showed that NH3 concentration had a strong negative linear
relationship with GS activity in the leaves (r=−0.8549).

GOGAT Activity

Figure 4 showed changes of GOGAT activity in the roots
and leaves of cucumber seedlings under nitrate stress.
GOGAT activity was much higher in the leaves (from 41.85
to 45.92 NADH micromoles per milligram protein per
minute) than in the roots (from 22.74 to 27.08 NADH
micromoles per milligram protein per minute) under control
conditions. With respect to CK, GOGAT activity dramati-
cally increased by 38.2% in the roots of T seedlings during
the first 2 days. From 2 to 4 days, a rapid decrease in the
activity occurred and after 4 days the decrease became
slow. At 12 days, GOGAT activity in the roots of T
seedlings was 51.5% lower than CK. In the leaves of T
seedlings, significant decrease in GOGAT activity occurred
over treatment course. At 12 days, GOGAT activity in the
leaves of T seedlings was 74.4% lower than CK. Correla-
tion analysis showed that NH3 concentration had a strong
negative linear relationship with GOGAT activity in the
leaves (r=−0.9720).

GDH Activity

Figure 5 showed changes of GDH activity in the roots and
leaves of cucumber seedlings under nitrate stress. GDH
activity was much higher in the roots (from 58.36 to 64.51
NADH micromoles per milligram protein per minute) than
in the leaves (from 31.58 to 39.29 NADH micromoles per
milligram protein per minute) under control conditions.
Over treatment course, GDH activity had few changes in
the roots of CK but increased slightly in the leaves. GDH
activity in the roots of T seedlings decreased with respect to
CK. At 12 days, GDH activity in the roots of T seedlings
was 41.3% lower than CK. In the leaves of T seedlings,

Fig. 2 Changes of ammonia concentration in the roots and leaves of
cucumber seedlings under nitrate stress. Plants were grown in nutrient
solution containing 14 (CK) and 140 mmol L−1 (T) nitrate during
12 days, respectively. Vertical bars represent the standard errors (n=3)

Fig. 3 Changes of glutamine synthetase activity (a) and correlation
analysis between glutamine synthetase activity and ammonia concen-
tration (b) in the roots and leaves of cucumber seedlings under nitrate
stress. Plants were grown in nutrient solution containing 14 (CK) and
140 mmol L−1 (T) nitrate during 12 days, respectively. Vertical bars
represent the standard errors (n=3)
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GDH activity rapidly increased by 39.5% with respect to
CK at 1 day and decreased thereafter. At 12 days, GDH
activity in the leaves of T seedlings was 24.0% lower than
CK. Correlation analysis showed that NH3 concentration
had a strong negative linear relationship with GDH activity
in the roots (r=−0.9299).

Discussion

NH3, which originates from a wide variety of metabolic
processes such as nitrate reduction (Hirel and Lea 2001), is
the final form of inorganic nitrogen prior to the synthesis of
organic nitrogen compounds and plays a critical role in

plant development (Masclaux-Daubresse et al. 2006), but
excessive accumulation of NH3 is toxic to plants (Cao et al.
2009). Unlike many other molecules or ions, NH3 is
difficult to compartmentalize because it is membrane
mobile (Roubelakis-Angelakis and Kliever 1992). Conse-
quently, plants are unable to use compartmentalization,
which is often used with other harmful materials where the
vacuole serves to isolate them from the cytoplasm with
movement restricted by the tonoplast (Qiu et al. 2003), as a
protection strategy against elevated NH3. Therefore, NH3

assimilation is considered as the only way by which plants
can reduce elevated NH3 level (Roubelakis-Angelakis and
Kliever 1992). In the present study, nitrate stress resulted in
large amounts of NH3 accumulation in the roots and leaves

Fig. 5 Changes of glutamate dehydrogenase activity (a) and
correlation analysis between glutamate dehydrogenase activity and
ammonia concentration (b) in the roots and leaves of cucumber
seedlings under nitrate stress. Plants were grown in nutrient solution
containing 14 (CK) and 140 mmol L−1 (T) nitrate during 12 days,
respectively. Vertical bars represent the standard errors (n=3)

Fig. 4 Changes of glutamate synthase activity (a) and correlation
analysis between glutamate synthase activity and ammonia concen-
tration (b) in the roots and leaves of cucumber seedlings under nitrate
stress. Plants were grown in nutrient solution containing 14 (CK) and
140 mmol L−1 (T) nitrate during 12 days, respectively. Vertical bars
represent the standard errors (n=3)
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of cucumber seedlings (Fig. 2) because of great inhibition
of NH3 assimilation enzymes activity (Figs. 3a, 4a, and 5a).
Although in short-term treatment, GS and GOGAT activity
in the roots and GDH activity in the leaves of T seedlings
were stimulated to some extent, this stimulation seemed
few effects on preventing from excessive accumulation of
toxic NH3 in cucumber seedlings. These results indicate
that NH3 toxicity might be involved in nitrate stress to
plants.

In higher plants, there are three enzymes—GS, GOGAT,
and GDH—involved in NH3 assimilation reactions (Lam et
al. 1996). The three enzymes constitute two NH3 assimila-
tion pathways—GS/GOGAT and GDH pathways (Suárez et
al. 2002). Before 1974, GDH pathway was considered to be
the key reaction in NH3 assimilation (Miflin and Lea 1980).
Since 1974, GS/GOGAT pathway has been considered to
be the primary route for the initial assimilation of NH3

(Masclaux-Daubresse et al. 2006) because GS has a much
higher affinity of NH3 than GDH (Stewart and Rhodes
1978). However, some evidence challenges this view. It has
been reported that GS and GDH activity were detected in
grape root and leaf extracts, whereas GOGAT activity was
not detected in grape roots (Ghisi et al. 1984; Roubelakis-
Angelakis and Kliever 1983). This result indicates that
other NH3 assimilation pathways (e.g., GDH reaction)
could be more important in grape than in other plants
(Roubelakis-Angelakis and Kliever 1992). Melo-Oliveira et
al. (1996), Oaks (1995), and Yamaya and Matsumoto
(1985) have also provided supporting evidence for an
important role of GDH in NH3 assimilation. These results
lead to the hypothesis that alternative pathways might
operate ammonia assimilation under particular physiologi-
cal conditions when the GS/GOGAT pathway may not be
able to fulfill its function (Harrison et al. 2003).

Interestingly, our research showed organ dependence in
NH3 assimilation pathways of cucumber seedlings, partially
supporting the hypothesis above. Under control conditions,
GS and GOGAT activity were much higher in the leaves
than in the roots (Figs. 3a and 4a), indicating that GS and
GOGAT possibly played a more important role in ammonia
assimilation in the leaves (Miflin and Habash 2002). In
contrast, GDH activity was much higher in the roots than in
the leaves (Fig. 5a), indicating that GDH possibly played a
more important role in ammonia assimilation in the roots
(Turano et al. 1997). Furthermore, correlation analysis
showed that NH3 concentration had a strong negative linear
relationship with GDH activity in the roots, whereas NH3

had a strong negative linear relationship with GS and
GOGAT activity in the leaves (Figs. 3b, 4b, and 5b). Based
on this evidence, we presume that NH3 assimilation is
possibly controlled by different pathways in the roots and
leaves of cucumber seedlings. In the roots, NH3 may be
assimilated primarily via GDH pathway, whereas in the

leaves, NH3 assimilation may be primarily controlled by
GS/GOGAT pathway.

Ammonia assimilation is highly regulated by environ-
mental factors such as light and water supply. The study of
the expression of the nuclear genes encoding the chloro-
plastic form of GS in maize and Arabidopsis has revealed
that the gene for this GS isoform is tightly regulated by
light in a process at least in part mediated by phytochromes
(Oliveira and Coruzzi 1999; Peterman and Goodman 1991;
Sakakibara et al. 1992). Light can affect genes expression
of ammonia assimilation by acting not only directly via
phytochromes activation but indirectly via changes in levels
of carbon metabolites. One well-described indirect effect of
light is the activation of photosynthesis leading to a
subsequent increase in the biosynthesis of carbon metabo-
lites such as sucrose (Oliveira and Coruzzi 1999), which is
an important regulator for NH3 assimilation. Garg et al.
(1998) reported that the activity of GS and GOGAT
decreased and GDH activity increased under water stress
in cluster bean, indicating a possible shift in the pathway of
ammonia assimilation from the normal GS/GOGAT path-
way to the GDH pathway under intense water stress. In the
present study, GS and GOGAT activity in the roots and
GDH activity in the leaves of T seedlings were stimulated
during the former treatment period (Figs. 3a, 4a, and 5a),
indicating possible shifts in the pathways of ammonia
assimilation from the normal GDH pathway to GS/GOGAT
pathway in the roots and from the normal GS/GOGAT
pathway to the GDH pathway in the leaves under high
nitrate stress. These shifts might be involved in NH3

tolerance of cucumber seedlings. Thereafter, GS, GOGAT,
and GDH activity in the roots and leaves all decreased
(Figs. 3a, 4a, and 5a) possibly due to osmotic effects and
NH3 toxicity. High nitrate concentration in the root medium
resulted in low water potential and eventually might lead to
water stress (Table 1), which possibly resulted in the
decrease of photosynthesis. Excessive accumulation of
NH3 under high nitrate might also result in the decrease
of photosynthesis due to the severe inhibition of Hill
reaction by NH3 accumulation (Izawa 1977). The subse-
quent decrease in the biosynthesis of carbon metabolites
might therefore lead to the significant inhibition of
ammonia assimilation enzymes.
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